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LETTER TO THE EDITOR 

Visible points in a lattice 
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Laborataire de Physique des Solides de Bellevue, CNRS 92195 Meudon Ccdex. France 

Received I August 1991 

Abstnd. The geometrical structure associated with visible points in a lattice i s  investigated. 
It appears to be the MBbius transform of the original lattice. The related symmetry group 
and stmaure fador are explicitly derived. 

Let A be an n-dimensional lattice of points. I call F,, the set of points visible from 
the origin (excluding the point at the origin). For example, if A = Z2, this set (figure 
1) is equivalent to that of rational irreducible fractions. Or, if one restrict to the values 
0s x, y s d, it is equivalent to the Farey series of order d. The aim of this letter is to 
present some properties of this set of points. More precisely, I demonstrate the following 
three properties: 

(a) the set FA can be considered as the Mobius transform of A; 
( b )  FA is invariant under the action of SL(n, Z); 
( c )  the structure factor of FA can be calculated. 
In the following I shall mainly refer to the simplest case A=Z’, but most of the 

reasoning and results are easily extended in general dimensions. 

Figure 1. A limited view of the visible point in the case A=Z2.  The full set is invariant 
under SL(2.Z). 
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Consider the function h,(x, y )  which takes the value 1 if (x, y )  E A and zero in the 
opposite case. Note that in 111 the author gives the value -1 to the function where it 
is zero here. In the following we note F for Fz.. and 2F for F(2zjz, etc.. . 

If (x, y )  is a visible point of h2 then ( p x ,  p y ) ,  p EN*, is a visible point of (pZ)’, so 

hZ = U ( p F )  (1) 

hzl= hF+ h2,+ h,, +.. . = 1 hPF (2) 

and 

PEN’ 

It is clear that the two sets p F  and qF do not intersect when p # q. As a consequence 
hF is the Mobius transform of hZz (cf Hardy and Wright [ 2 ,  theorem 2701) 

where p ( / )  is the Mobius function: 

/do= 0 if 1 contains a squared term in its prime factor decomposition (4) r if I contains p different prime factors. 

All of this is true in general dimensions. 
F is clearly not periodic. One simple proof consists in calculating the frequency 

of visible points. If it is irrational, then it will not be possible to construct a repetitive 
cell (even very large) associated with a periodic structure. Let p be this quantity: 

Z r e ~ ~  hi= 
Z r a z  hzz P =  

- - Zwz2 LN* dOhiiz12 
xrezz  hz2 

In d dimensions the non-periodicity of F is a consequence of the (yet unproved for 
odd d > 3 )  irrationality of the Riemann function ( ( d ) .  Note that the converse is not 
true: it is easy to find other proofs for the non-periodicity of F, but, unfortunately, 
this does not imply the irrationality of [ ( d ) .  

F is not periodic, but it presents nevertheless some regularities, which are already 
perceived by looking at figure 1. In particular, prime numbers do  structure this set; 
square ‘blocks’ whose side equals a prime number form patterns which seem to repeat 
periodically, but with some mistakes. Without being able to be more precise, I would 
say that these blocs play a role similar to that of periodic approximants in a quasicrystal. 
But here it is prime numbers instead of irrational numbers which come into play. In 
fact I show below that this set is almost periodic. 

F bas D4 dihedral group symmetry. In addition, and much more interesting, F is 
also invariant under the action of SL(2, Z). As a proof, it suffices to remark that any 
element M of SL(2, Z) transforms a unit cell of Z2 (a unit area parallelogram) into 
another unit cell. The basis vectors defining a unit cell connect the origin to a visible 
point of Z’. Therefore M brings a visible point onto a visible point and let F be 
invariant. As all the Z2 unit cells can be put in correspondance under the action of 
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SL(2, Z), and any visible point belongs to a unit cell (in fact to infinity), one deduces 
that F possess this symmetry. Moreover the group action is transitive (which is not 
the case for its action onto E2 for example). 

In fact, in any dimension, the sets pF (equation (1)) are the equivalence classes 
of the lattice under SL( n, E). 

Let S,(q) be the structure factor of the set F, defined as follows: 

where C is a normalization factor which we take such that S,.(q) = 1 at the reciprocal 
network nodes of E*.  Using the above results, it becomes simply 

But Sz2(lq) = 1 if and only if 

Iq =2mms+2mmyy mx,m,EN 

and S2>( 14) = 0 in the opposite case. If q reads 

with qA A n, = 1, qy A nv = 1 
qx 4 Y  q =271-+271- 
n, ny 

then 

The structure factor of F is shown in figure 2. The area of the circles is proportional 
to the absolute value of S ( q ) .  The largest circles are centred on the nodes of the 
reciprocal network of k2. S F ( q )  is invariant under SL(2, E). This is easily seen by using 
the transitive property of the group onto F. If M is a matrix of SL(2, k), then 

The set F is a geometrical model which illustrates some quantities and operations of 
number theory, associated in particular with prime numbers and the modular group. 

Let me repeat that the above described properties generalize without difficulty to 
any lattice in any dimension. Indeed, on one hand, in a given dimension, all lattices 
are identical modulo an affine transformation. On the other hand, the visibility property 
is itself an affine (and even projective) property. It remains to take into account the 
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Figure 2. The Stmcture factor of the set represented in figure 1. The true function is dense; 
only the largest peaks are shown. The circle areas are proportional to the absolute value 
of S(q).  The stmcture factor is invariant under SL(Z.2). 

relative densities of the lattices in d dimensions. For example the factor l 2  which 
appears in the denominator in & ( q )  (equation (7)) becomes Id. The lattice metrics 
only matter if one wants to precisely localize the points of F or the vectors q in the 
reciprocal space. 

Can F be of interest in physics? Here are some points to consider. 
As visible points of a lattice, the points in F could play a role in elucidating the 

geometrical aspects of channelling experiments. 
In the field of quasicrystals, a well known method to produce quasiperiodic tilings 

consists of the selection of points in a high-dimensional lattice and their projection 
on a so-called ‘physical space’ of lower dimension. If the tiling has certain self-similar 
properties, the physical space is the eigenspace of a suitable hyperbolic matrix in 
SL(n ,E) .  The set of iterates of this matrix produce new points of the tiling. This 
‘inflation mapping’ [3] also generates the successive periodic ‘approximants’ of the 
quasicrystal. Now it is clear from what is said above that if one starts with a visible 
point of the high-dimensional lattice, the iterates under the inflation map will also be 
visible points. This is a sort of hidden symmetry in the quasicrystal, whose points can 
he naturally split into sets of points which, before projection, belong to the same pF. 
Note however that this inflation map is of a semigroup nature. 

If one considers the Voronoi cell (Wiper-Seitz or Brillouin zone) which surrounds 
the origin and closes it onto itself (into a torus), then each point in F is in one-to-one 
correspondence with a periodic orbit on the torus. If one tries to visit this zone in the 
most homogeneous manner one should follow a line directed towards a far point in 
F. If one knew how to extend the present work to the case of visible points in regular 
tilings of the hyperbolic plane, this could prove interesting for certain problems related 
to chaos where one enumerates closed geodesics in certain hyperbolic manifolds. 

More exotically, one can consider the Olbers paradox of astrophysics by supposing 
the stars located on a network and calculating the light intensity at the origin as a 
function of the solid angle. Only the F points contribute. 
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This work started from a discussion about Farey sequences with Clhent  Sire. After 
it was completed, Marjorie Sknkchal has brought to my attention a related work by 
M Schroeder which studies this set in the case A = d 2  and calculates its Fourier transform 
on a computer. The above described results are more general and simplify greatly the 
analysis of this set. 
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